

Electrical and Computer Engineering Department

Power Electronics- ENEE3305

Course Outline

Instructor: **Dr. M. Abu-Khaizaran** First Semester 2019/2020

E-mail: mkhaizaran@birzeit.edu Office No.: Masri216

Text book:

Muhammad H. Rashid 'Power Electronics: Circuits, Devices and Applications', 4th edition

Prentice Hall 2013

A second reference book:

Ned Mohan, Tore M. Undeland, and William P. Robbins 'Power Electronics: Converters,

Application, and Design', 3rd edition 2003

Prerequisite: Electronics I

Lecture 1 on TR 10:00-11:15AM in Masri 108 Lecture 2 on TR 8:00-9:15AM in Masri 108

Office Hours: S: 11:00 - 12:00, W: 10:00 - 2:00, and T&R: 12:30 - 14:30

Intended Learning Outcomes (ILO's)

	Intended Learning Outcomes (ILO's) of the course	Programme objectives
1	To be able recognize and describe the characteristics of various	a
	types of power electronic devices and power electronic circuits	
2	To be able to analyze various types of single/three phase	a
	controlled and uncontrolled rectifiers	
3	To be able to analyze and simulate power electronic circuits	a, k
3	using Orcad/Pspice or MatLab software packages	
	To be recognize the topology and to identify the functionality of	a
4	various types of AC Controllers such as: phase-angle and on-off	
-11.	AC Controllers, Cyclo-Converters, or Matrix Converter	
	To be able to analyze the characteristics and topology of various	a
5	types of DC-to-DC Converters, such as: Buck, Boost, Buck-Boost	
	or Full Bridge	
6	To be able to describe and to analyze DC-to-AC Converters	a

Course Contents:

- 1. Introduction to Power Electronics and their Applications
- Power Devices, Characteristics, Switching Behavior and Limitations:
 Power Diodes, Thyristors, TRIACs, GTOs, Power BJTs, Power MOSFETs and IGBTs
- 3. Commutation Techniques for Thyristors and Commutation Circuits
- 4. Snubber Circuits

5. Diode Circuits and Rectifiers:

- Introduction (Diodes with RC and RL loads)
- Single Phase Half and Full Wave Rectifiers
- Multiphase Star Rectifiers
- Three Phase Bridge Rectifiers
- Rectifier Circuit Design:
 Capacitor smoothing, Inductor smoothing and LC Filters
- The Effects of Source and Load Inductances
- Linear Regulated Power Supplies

6. Controlled Rectifiers (Converters)

- Single Phase Semi Converter
- Single Phase Full Converter
- Three Phase Half Wave Converter
- Three Phase Semi-Converter
- Three Phase Full Wave Converter
- Power Factor Improvement; Extinction and Symmetrical Angle Control (self study)

Mid Term Exam on Thursday (14/11/2019) in class

7. DC Converters (Chopper Circuits)

- Step-Down (Buck) Converters
- Step-Up (Boost) Converters
- Step Down/Up (Buck-Boost) Converters
- Full Bridge Converters
- Classification of Chopper Circuits

8. AC Voltage Controllers

- Control Schemes and Principle of Operation
- Single and Three Phase Controllers
- Cyclo-Converters
- Matrix Converters

9. Inverters

- Voltage and Current Source Inverters
- Switching Schemes
- Square Wave Operation of Single and Three Phase Inverters
- Voltage Cancelation method for Single Phase Inverters
- Sinusoidal Pulse Width Modulation (SPWM) for Half Bridge
- Sinusoidal Pulse Width Modulation (SPWM) for Single and Three Phase Inverters

If Time permits

10. Space Vector Modulation (SVM) Switching Scheme

Teaching Methods:

Power Point Presentations, Traditional methods using illustration by markers and white board, interactive discussions, simulation of studied circuits and assignments....

Grading:

Mid Term Exam on 14/11/2019:	25%
Practical Project:	15%
Assignments, and Short Exams:	15%
Classwork and Participation:	5%
Final Exam:	40%